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Abstract 
Many standard statistical process control techniques involve sophisticated mathematical concepts, 
which are frequently misunderstood and misused by their users. This means, the paper argues, that the 
techniques, and the terminology and concepts underlying them, are inappropriate for their intended 
uses and users. The paper considers the areas of the statistical background which cause difficulties. It 
goes on to describe some alternative concepts, techniques and terminology - which are likely to be 
conceptually simpler and more "user-friendly" (and in some cases more accurate and robust). None of 
the ideas require users to be familiar with the standard deviation. We also suggest that the approach of 
reengineering the conceptual background to suit the context of users and uses may be appropriate to 
other areas of practical statistics and OR. The paper identifies some general principles for achieving 
this. 
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Introduction 
The difficulties non-mathematicians often experience with mathematical areas of statistics and OR 
have been noted frequently. The consequences are obvious and important: for example, the techniques 
in question are often not used when they would yield substantial benefits, and when they are used they 
are sometimes applied in ways that are - to the experienced practitioner - silly or counter-productive. 
 A related issue is the widely acknowledged importance of emphasising the process of solving 
problems, and the spirit or philosophy of statistics and operational research, as opposed to the view of 
statistics and OR as simply collections of mathematical techniques

1-4
. Without this broader view, 

collections of techniques are generally of little value. 
 However, mastery of the appropriate mathematical concepts and techniques is clearly 
necessary to implement the philosophy and solve real problems successfully. The danger is that 
novices will fail to master the relevant techniques, and so not be in a position to consider the broader 
issues and use their understanding fruitfully. Even if they do manage to master the techniques, there is 
still a danger that the effort expended may mislead them into thinking that the main problems in 
implementing OR techniques are mathematical, and that any other issues are relatively trivial.  
 This paper considers this issue in relation to statistical process control (SPC) - an area in 
which sophisticated mathematical concepts are widely used by non-specialists. It proposes a radical 
solution: reengineering the statistical terminology, concepts and techniques used to make them more 
appropriate for the context of use - ie conceptually simpler and more "user-friendly". The hope is then 
that this will enable novices to develop a fuller and more flexible understanding of the basic statistical 
principles, which in turn should lead to a better appreciation of the philosophy of SPC, and more 
effective process monitoring. 
 From the perspective of most beginners, the statistical theory necessary for SPC divides into 
two categories: ideas which are easy to understand; and ideas which are difficult to understand and 
may be almost incomprehensible to many novices. Line graphs, histograms, averages, scatter plots, 
and so on, fall in the "easy" category. (This is not to say that they will necessarily occur to novices 
without guidance.) In the "difficult" category we may put: 
1 the standard deviation and the normal distribution; 
2 capability indices (eg cpk); 
3 the interpretation of control charts. 
4 the standard mathematical models and their associated algorithms for calculating limits for 

control charts (mean charts, range charts, proportion defective charts and so on); 
This may seem unduly pessimistic - especially the first item on this list. However, there is evidence to 
suggest that, in the UK at least, even the simpler items on this list cause very considerable difficulties 



for novices. In a previous paper
5
 we have described some of the problems experienced with concepts 

such as the standard deviation - described as "horrendous" by one manager - and the use of the 
standard algorithms for calculating control chart limits - where mistakes in calculations or 
interpretation may render the results useless. 
 The usual (and laudable) rhetoric behind SPC generally emphasises the fact that the 
procedures are owned, used and preferably initiated and designed by process operators themselves. 
This is clearly difficult if the underlying statistical theory is too complex for the process operators to 
understand. (In practice SPC, and specific statistical procedures, may be forced on organisations by 
customers or regulating authorities

6
.) This paper suggests some alternative approaches to the difficult 

areas in the list above.  These alternatives are based on more "user-friendly" concepts than the usual 
ones. Some of these alternatives have been proposed in an earlier paper

7
; the present paper extends 

these suggestions and provides further examples of their use. (The suggested alternatives for 1 and 2 
are not covered in the earlier paper, and the approach to 3 presented here is rather different.) One of 
the proposals is an approach to 4 using the technique of resampling
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; space limitations mean that 

this is described only very briefly in the present paper. For further details the reader is referred to the 
earlier paper

7
; we also hope to produce another paper exploring this issue in more depth soon. 

 This paper is not concerned with the philosophy of SPC or with what is worth monitoring and 
the likely benefits. Our concern is simply with suggesting more appropriate alternatives to the 
statistical concepts and techniques in the list above. However, these more user-friendly alternatives 
should enable novice users to make more realistic judgments on these broader issues. 
 The paper explains the proposed methods by giving a brief example of the methods in action. 
However, this is just one example: different approaches will be appropriate to different situations. The 
potential benefit of the approaches suggested here is that the improved understanding of the statistical 
aspects of the procedures means that users can be more flexible than they can be with procedures 
which are only vaguely understood.  
 These methods are intended for beginners, but the reader should bear in mind that the 
explanations given here are much briefer and more abstract than would be appropriate in an 
explanation for novices. The reader should also note that we have delayed a discussion of some more 
technical issues, and potential objections to the proposals here, to the section on queries and 
objections answered. 
 
The standard deviation and the normal distribution 
The first difficult concept on the list is the standard deviation. This, as opposed to the variation which 
it measures, is seen by many novices as the core concept of statistics, but it is also the point at which 
many start to get lost. There are alternative, more transparent, ways of assessing variability. The most 
useful are based round order statistics like quartiles and percentiles, the interquartile range, or box-
and-whisker plots. These have the advantage that their meaning can be easily described in simple 
language (eg 75% of the sample are above the lower quartile) whereas this is not true of the standard 
deviation. The definition of the standard deviation inevitably prompts questions about why the 
deviations from the mean are squared - answers to which must be based on considerations of 
mathematical convenience, which is an unsatisfactory basis for a user-friendly concept.  
 There is another reason why measures based on order statistics are preferable to concepts like 
the standard deviation. The definition of action lines on control charts in terms of 0.1% of normal 
variation lying above the upper line, and another 0.1% lying below the lower line, is, in effect, a 
statement about percentiles. The same is true of other concepts such as confidence intervals. In this 
sense percentiles, quartiles, and quantiles in general, are the approach to assessing variability which 
provides a direct link to the intuitive idea of variability or spread. The choice is not between learning 
about percentiles or the standard deviation, it is between learning about percentiles only, or about the 
standard deviation and percentiles.  (There is little point in understanding what the standard deviation 
is without an appreciation of the fact that the "three sigma" limits extend from the 0.1 percentile to the 
99.9 percentile.) The novice's task is clearly easier if (s)he can make do with percentiles and quartiles, 
and forget the standard deviation.. 
  We will take the difference between the median and one of the quartiles - the quartile 
deviation or QD - as the basic measure of spread in place of the standard deviation. For example, for a 
distribution with 
 Upper quartile = 24 units 
 Median        = 20 units 
 Lower quartile = 17 units 



the QD is 4 units for the upper part of the distribution and 3 units for the lower part. The reason for 
the discrepancy may be that the underlying distribution is asymmetrical, or it may be due to the 
particular sample we are using. In the first case we can distinguish between the upper and lower 
values: 
 Upper quartile deviation (UQD) = 4 units 
 Lower quartile deviation (LQD) = 3 units 
In the second case we can assume the values are the same and use their mean as an estimate: 
 Quartile deviation (QD)  = 3.5 units 
The QD is obviously equal to half the difference between the quartiles - which is sometimes referred 
to as the semi-interquartile range. It does not depend on the median.  
 One of the main purposes of using the standard deviation is to estimate probabilities from the 
normal distribution. It is a simple matter to rescale the normal distribution in terms of QDs instead of 
SDs - as in the Appendix. 
 Explaining the rationale behind the table in the Appendix in mathematical terms is not easy. 
However, experiments with real or simulated data which show the normal, bell-shaped pattern should 
convince even sceptical beginners that the relationship between the number of quartile deviations 
from the median and the percentiles of the distribution follows the Appendix very closely. (It is not 
always necessary to use tables such as these even when working with distributions which are, in 
effect, normal: the resampling approach

7-10
, discussed briefly below, involves simulating distributions, 

which means that abstract models, such as the normal distribution, are not necessary.) 
 None of the methods advocated below makes use of the standard deviation. Where a 
quantitative assessment of spread is required they refer to the QD, UQD or LQD instead of the 
standard deviation. The advantage is that these statistics are likely to be more transparent, easier to 
calculate, and also avoid the problem that the standard deviation is not a resistant measure: it is likely 
to be unduly affected by extreme values

11
. 

 
Measures of capability 
The remaining examples in this paper are based on data which refer to samples from a colour printing 
process within a packaging company. The values recorded are densitometer readings (multiplied by 
1000 to reduce the number of decimal places) showing the variation in a particular colour over a 
representative sampling period. The agreed specification is 1600 - 1800. Figure 1 is a histogram of 34 
samples of six densitometer readings (204 readings in all) with the tolerance limits superimposed. 
 FIGURE 1 HERE 
 Figure 1 is a very simple way of assessing capability. Diagrams such as these are simple to 
understand, easily drawn, and give a clear indication if the process is capable of meeting the required 
specification: in the present case it is clearly not capable. 
 Capability is often measured by means of a capability index such as cpk. This is only 
meaningful if the measurements are normally distributed and the process is in statistical control

12
, 

neither of which is true of the data shown in Figure 1. (It should be obvious that the data is not normal 
from the histogram, and the control chart for the mean set up to see if the process was in statistical 
control found that 9 of the 34 sample means were outside the action limits.) Table 1 shows part of a 
simulated data set which is normally distributed and in statistical control: we will use this in our initial 
discussion of capability measures and control charts because we can be sure that it satisfies the 
necessary assumptions. We can reasonably assume that this data is typical of the printing process once 
it has been thoroughly stabilised by eliminating all "special causes". 
 TABLE 1 HERE 
 The value of cpk derived from the data in Table 1 is 
 cpk = 0.45 
using the standard method involving estimating the standard deviation from the average range of the 
sample

13
. This low value indicates that the process is not capable of meeting the specification. 

 There are two difficulties with this method of measuring the capability. First, it requires an 
understanding of the meaning of the index. This is not trivial: a value of 1 would indicate a defect rate 
of around one or two parts per thousand, with higher values of the index corresponding to more 
capable processes with lower defect rates. Second, the index is only useful for normally distributed 
measurements, and provides an assessment of "potential capability" if the process is "in control". It 
cannot be used for the data shown in Figure 1. The use of a diagram such as Figure 1 is far more 
transparent and avoids both of these difficulties. 
 However, a numerical measure may sometimes be useful to provide a simple summary of the 



situation. The obvious alternative to capability indices, such as cpk, is to use the much more 
straightforward measure "parts per million out of tolerance"

14
 (or percent out of tolerance). It is quite 

difficult to see what advantages cpk has over a simple parts per million measurement except that the 
former is more esoteric and serves to mystify what is essentially a simple concept. 
 For these reasons we suggest estimating the parts per million defective (ppmd) as an 
incapability index. There are several ways in which this could be done, of which we will now review 
two. 
1. Directly from the empirical data 
49 of the 600 measurements recorded are outside the specification limits, so the estimated incapability 
from this method is 

ppmd = 81,667, or 8.2% defective. 
This is obviously not likely to be accurate over the long term, and does not enable extrapolation to 
rare events not represented in the sample (eg the chance of a measurement being less than 1500), but 
it is a very simple method. When the only data available is attribute data, or when there is no a priori 
distribution which can be assumed, this is the only possible method. 
2. Using the data to fit a normal distribution 
Obviously the first thing to do is to check that the data is roughly normally distributed - in the case of 
the data in Table 1, this is clearly true. To use the normal table in the Appendix, we need to work out 
the quartiles (1718 and 1641) and the median (1680) of the data (simply by arranging the data in order 
of size and reading of the appropriate quantiles). The UQD and LQD can then be worked out: 
 UQD = 38 

LQD = 39 
We can combine these to calculate a combined estimate of the quartile deviation (QD) of 38.5. This 
means that the upper specification limit is (1800-1680)/38.5 = 3.1 QDs above the median, and the 
lower specification limit is (1680-1600)/38.5 = 2.1 QDs below the median. The Appendix then 
indicates that 1.82% of the output from the process will be above the upper specification limit, and 
7.84% will be below the lower limit. This gives a predicted defect rate, or estimated incapability, of 
9.7% - which is close to the empirical rate of 8.2%. If the lower specification limit had been 1500 and 
we had wanted to estimate the percentage of the output less than 1500, this method can be used to 
produce such an estimate (0.1%).  
 It is important to remember that the data is used to derive the median and quartiles only; 
estimates of the tails of the distribution are worked out from the central 50%. If there are outliers 
which would not be expected from the pattern of this central 50%, the incapability index, in effect, 
assumes that these outliers do not exist. 
 
Interpretation of control charts 
Shewhart control charts (mean charts, range charts, "p" charts, "c" charts, etc) are a widely used way 
of monitoring a process. They comprise a line graph showing the values of the appropriate statistic 
(mean, range, etc) estimated from samples taken at regular points in time. Control lines are 
superimposed to indicate statistically significant departures from the normal performance - 
corresponding to special causes of variation which should be investigated. Special causes detected by 
charts for the colour printing process, for example, included set-up problems and problems with the 
ink. 
 On a conventional control chart the statistical control lines are marked as values on the 
vertical axis, so the uninformed viewer might expect them to refer to critical values of, in the example 
here, the densitometer reading. This leads on to the natural, and very common, misinterpretation of 
the statistical control lines as some kind of tolerance interval. A process which is "out of control" is 
assumed not to be delivering what customers want. 
 This interpretation is not, of course, accurate at all: the statistical control lines mark points on 
a very different scale measuring the strength of the evidence for a change from normal performance. 
At first sight this may appear to be a minor quibble. However, anecdotal evidence suggests that this 
misinterpretation is very common, and as the charting procedures are designed to be used and 
"owned" by the operators of the process and not by expert statisticians, this problem deserves to be 
taken very seriously. 
 To try and avoid these problems, we suggest that statistical control limits should be clearly 
labelled with the (obviously approximate) percentage of points which are likely to lie within each 
band if the process is behaving according to hypothesis. Figure 2 below shows how this could be 
done. The term "control" itself is a misleading term which may be responsible for some of the 



misconceptions
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. We suggest using the words expected zone and unexpected zone instead. This 
seems more natural, and less potentially confusing, that the conventional format. The statistical limits 
could be called surprise limits to clarify their meaning. (One possible confusion here is that the 
natural acronym, usl, may be confused with upper specification limit: this is the reason for referring to 
the specification limits as tolerance limits in Figure 1.) 
 FIGURE 2 HERE 
 It is important to be clear about the basis of the expectations on which these zones are based. 
We will say that the expected zone is based on the assumption of ordinary conditions: by definition, 
special causes only occur in extraordinary conditions, so points in the unexpected zone indicate the 
possibility that conditions are not ordinary and special causes may be acting. It is obviously important 
that users should be in a position to see what "ordinary" incorporates in practice - although this may 
involve more statistical insight than many users can achieve, and is a source of confusion for 
beginners

7
 and disagreements among experts

16
. For the models used in the conventional charts 

ordinary conditions comprise the situation when there are no factors differing between samples which 
do not differ to a similar extent within each sample. 
 In the rest of this paper we will avoid the word control - calling the charts monitoring charts 
and the "control" limits statistical or surprise limits. 
 
Calculation of surprise limits 
Plotting a monitoring chart (as a line graph) is easy. Calculating the statistical surprise limits is not. 
Most charts use a mathematical model of the distribution of the data used to estimate the variability of 
the statistic plotted and so the statistical limits. For example, the binomial distribution is used for the p 
chart, the Poisson distribution for the c chart, and the central limit theorem for the mean chart. There 
are a number of difficulties with this: the situation has to fit one of these standard models, and the user 
needs to understand the model used. The number and statistical sophistication of these models makes 
the latter problem particularly serious. 
 We propose two, alternative, approaches. In both cases the conceptual basis is more 
transparent and more generally applicable than the standard models. The latter point is important in 
reducing the amount of detail learners need to master - each of the methods will produce estimates of 
surprise limits for mean, range and proportion defective charts

7
, and other possibilities as well. 

 
The quartiles approach 
Our first suggested method of simplification is based on the idea of using the points plotted (means 
and ranges in the present example) directly to estimate the appropriate statistical limits. 
 There are two main difficulties with this. First, if there are special causes operating in the 
samples used to estimate the statistical limits, the limits will reflect the variability produced by these 
special causes as well as the common (within sample) causes of variation. This means that the chart 
will be an insensitive method of diagnosing special causes because the control lines are set wider than 
they should be if based only on "ordinary" variability. (Normally the chart should be set up only when 
the process is stable in the sense that "surprising" points have been eliminated. However, when the 
"trial limits" are set up, it may be necessary to estimate the limits from an unstable process. It is also 
likely that there may be special causes which are not strong enough to drive the monitoring chart 
beyond the surprise limits.) Second, a very large sample of points (each of which may depend on a 
sample of data taken at a particular time) would be required to estimate the 0.1 and 99.9 percentiles as 
the extremes (by definition) only occur occasionally.  
 For these reasons, the alternative proposed here is to base the estimates of statistical limits on 
the median and quartiles only. These can be estimated from a smaller sample of points, and 
furthermore, the fact that outliers do not directly affect the values found means that the influence of 
special causes will be eliminated - providing that these special causes do not occur in the middle 50% 
of samples. Ordinary conditions - and so expected performance - are implicitly defined as the state of 
the process when the sample statistics lie in the middle half of the distribution. This has the advantage 
of being a much simpler definition than the corresponding definition for a conventional chart (above). 
 The procedure is similar to that used for the capability calculation, except that the values used 
are the sample means or ranges, not the individual measurements. In the case of the range chart, in 
particular, the asymmetry of the distribution - the difference between LQD and UQD - points to the 
importance of keeping these two parameters separate. Appendix 1 indicates that the 99.8% statistical 
limits are 4.7 QDs above and below the median. The resulting surprise limits for mean and range 
charts based on the data in Table 1 are shown in Table 2. 



 TABLE 2 HERE 
 This is very simple and transparent procedure and requires very little arithmetic. The principle 
is simply that of extrapolating the pattern found in the central part of the distribution. On the other 
hand, the estimates produced are very rough and it does assume a "normal shape" in each half of the 
distribution - an assumption which is theoretically justified in the case of the mean chart, but only on 
the very superficial grounds of the rough pattern of the distribution in the case of the range chart. A 
more detailed analysis of the accuracy of this method will be given below in the section on Some 
questions and objections answered. 
 
The resampling approach 
Resampling is an approach to estimating sampling error by using a computer to draw random 
"resamples" from a sample of data
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. In an earlier paper

7
 one of the present authors suggested how 

this approach could be used for calculating statistical limits for "control" charts. The advantages are 
that the rationale behind the approach is transparent; it does not depend on mathematical probability 
theory; it is not necessary to make questionable assumptions about distributions and so the results are 
often more mathematically rigorous than the conventional methods; and a single method will cover a 
chart based on any statistic calculated from a random sample of data (including mean, range and 
proportion defective). There is not sufficient space in the present paper to discuss this further; for 
further details the reader is referred to the earlier paper

7
. We also hope to make it the subject of a 

future paper. 
 
Some queries and objections answered 
The standard deviation, and its associated concept the variance, is an important concept for further 
statistical theory. Therefore novices should learn about it and use it. 
In the short term this objection is valid if we consider that the standard deviation is part of the 
language of statistics with which everyone needs to be familiar. However, in the longer term, this 
argument does not hold because, for a normal distribution, the standard deviation is equal to about 
1.48 QD, and this relationship could easily be used to rewrite any equations involving the standard 
deviation or variance. The resulting equations may lack elegance, but this is unlikely to be of concern 
to non-mathematicians. The relevant parts of statistical theory could easily be translated into a more 
user friendly framework. The standard deviation is also the basis of a widely used slogan, "six 
sigma"

17
, but this slogan would - again - be more comprehensible if it referred to the variability itself, 

rather than an unintuitive measure of variability. 
As the QD depends on only two values, it is likely to provide a less reliable estimate of variability 
than is the standard deviation which depends on all values in a sample. 
In some circumstances (if the sample is small or the variable is discrete-valued) the sample QD may 
be a relatively unreliable means of assessing variation, but on the other hand it is more resistant
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 (to 

the influence of outliers) than the standard deviation. It would, in principle, be possible to devise a 
more reliable estimator of the population quartiles than the sample quartiles - but this would have the 
disadvantage of lacking transparency, although it would still be preferable to the standard deviation in 
that it would refer to an intuitively accessible quantity.  
The unreliability of estimates of the QDs, particularly when based on a small number of samples, 
means that the quartiles method of estimating surprise limits will only provide very rough answers. 
Further, treating each half of the distribution as a separate half normal distribution is at best a very 
rough approximation. 
It is true that this method will not produce reliable estimates from a short sequence of data points, or 
from data which take only a few discrete values (such as some p chart and c chart data), since the 
median and quartiles are likely to be unreliable or insensitive estimators of population parameters 
under these circumstances. However, rough approximations properly understood are likely to be 
better than misused or misinterpreted sophistication.  
 The data in Table 1, analysed in Table 2, was simulated by a spreadsheet (Microsoft Excel) 
from a normal distribution with a mean of 1677 and a standard deviation of 53. These are, in effect, 
the process mean and standard deviation which can be used to calculate the "true" limits: ie the limits 
which would result from an infinite amount of data. This can be achieved by using the constants based 
on the population standard deviation (F)

13
. Table 3 gives the errors in the limits produced by the 

quartiles method (by comparing these with the "true" limits). This table indicates that, for example, 
the upper limit for the mean chart produced by the quartiles method (1736) is 6% of the width of the 
"true" interval (134) less than the "true" limit (1744).  



 TABLE 3 HERE 
 Table 4 shows the distribution of these errors for 1000 simulated sets of data similar to Table 
1, and also the corresponding figures for the standard method. As would be expected, the median 
errors for the mean chart limits are close to zero, but the difference between the 2.5 and 97.5 
percentiles (ie a the central 95% probability interval) indicates that the quartiles method is not very 
reliable - even when the data consists of 100 samples. With smaller numbers of samples, the errors in 
the quartiles method are likely to be greater. (A similar simulation based on 20 samples shows that - 
to take one example - the 95% interval for the lower limit for the mean chart is roughly twice the 
width: -37% to +28%.) The range chart shows a similar pattern except that the medians are not zero: 
the quartiles method has a systematic bias when used to estimate statistical limits for range charts. 
 TABLE 4 HERE 
 These simulation results suggest that the quartiles method for estimating statistical limits for 
mean and range charts should only be viewed as an approximate method. The same is obviously likely 
to be true for other charts - p charts, c charts and so on. In practice this difficulty may be less 
important than it may seem in principle. If, as is often the case, points are plotted on the chart every 
few hours, the sequence of sample results available may be very long - hundreds rather than the 
conventional twenty of textbooks. The probability level of 99.8% is just an arbitrary (but useful) 
convention - which raises the question of the logic of worrying unduly about the precision with which 
this arbitrary convention is applied. Furthermore, the inaccuracies of the quartiles method may be 
negligible compared with errors due to the misuse of conventional methods - eg the (unnoticed) use of 
an incorrect formula in one of the case studies described in 

5
 produced errors of several hundred 

percent. 
 Clearly, when a greater degree of accuracy is wanted, or when there are only a few samples of 
data available, the quartiles method is not appropriate. The alternative we would suggest is the 
resampling approach, which arguably makes more rigorous and efficient use of the data than do the 
standard methods

7
.  

The surprise limits derived by the two methods may be very different for unstable processes. Why is 
this? 
As we noted above, the data on which Figure 1 is based indicates an unstable process. Clearly this 
data is not a suitable basis for setting up a monitoring chart, but it may still be necessary to derive 
statistical limits from such data to check if a process is stable. As this data is not simulated, we have 
no way of knowing (or defining) the "true" limits; all that is possible is to compare the quartiles 
method with the standard one.   
 TABLE 5 HERE 
Table 5 shows that there are very substantial differences between the two estimates of surprise limits 
for the mean chart in particular. One explanation is the potential unreliability of the quartiles method 
with a small number (34) of samples. However, the size of the discrepancies suggests that there may 
be a more fundamental cause. The assumptions about ordinary conditions are summarised in the 
sections (above) on each of the methods. As these are different, differences in the answers should be 
anticipated. It seems likely that there are substantial sources of variation between the samples in the 
middle half of the distribution of samples: this variation is reflected in the surprise limits derived from 
the quartiles method but not from the standard method. Ordinary conditions, as defined by the 
quartiles method, include circumstances which are not treated as ordinary by the conventional 
method. The conventional method - in this situation - is thus more sensitive than the quartiles method. 
It would be difficult to decide which approach is preferable without a much more detailed analysis of 
the printing process; in general there are arguments for different definitions of "ordinary conditions"

16
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However, there is a very strong argument for a transparent procedure - like the quartiles method - so 
that the exact sense in which the surprise limits should cause surprise is as clear as possible. 
 
Conclusions 
The terminology, concepts and methods suggested in this paper are designed for conceptual 
simplicity. They are also computationally simple - with the exception of the resampling approach. It 
should be obvious to users how and why the methods work, so the frequency and seriousness of 
mistakes and misunderstandings should be reduced. In addition, concepts and methods which are 
designed to be transparent should enable users to adapt methods to their own purposes, and to 
concentrate on designing methods of analysis of their own for their own purposes. In short, the spirit 
or philosophy of OR is more likely to flourish if the conceptual and mathematical basis is more user-
friendly. 



 The aim of this paper is not simply to propose an alternative set of recipes for SPC - although 
we have suggested alternative approaches to all the conceptually difficult areas identified in the 
introduction. We believe the philosophy behind our approach is of far wider applicability than SPC. 
There are five general themes underlying the approach. 
 First, concepts, such as the standard deviation, which are appropriate and useful for 
mathematicians, may be quite inappropriate for novices. There is little reason, beyond the inertia in 
any cognitive framework, not to redesign some of these concepts. 
 Second, the underlying concepts and terminology are very important and sometimes 
inappropriate. We have suggested measuring incapability in terms of parts per million defective 
instead of capability in terms of Cpk, and the concept of "ordinary conditions" as an alternative for the 
notions of "within samples variation" and "common causes". Similarly the terminology of "surprise" 
limits and the "expected zone" seems more natural than the very widely misinterpreted notion of 
"statistical control" (which is not the same as "real" control). A clear and simple description, or image, 
of technical concepts in terms familiar to users is obviously crucial. 
 Third, there are large gains to be made by using one general principle or method for a range 
of different situations. The quartiles and the resampling methods are both of much more general 
applicability than the conventional mathematical models. Similarly, the table in the Appendix and the 
quartile deviation are used for both the quartiles method for estimating surprise limits, and for the 
incapability index. 
 Fourth, there is the possibility of using informal methods. For example, Figure 1 provides a 
simple, graphical capability assessment of the process. Flexible informal procedures seem more 
appropriate to the task of encouraging process owners to diagnose and improve their own process. On 
the other hand, formal automatic procedures are quicker to perform once the rationale has been 
grasped. 
 The fifth point (which space limitations have prevented us from discussing in detail in the 
present paper) is that computer intensive methods such as resampling, and simulation in general, often 
provide a powerful but transparent way of avoiding the necessity of understanding and using subtle 
mathematical models. Iterative methods, perhaps implemented on a spreadsheet, for solving equations 
or optimising functions are another example of this strategy. These approaches all have the advantage 
that users with very little mathematical background can literally see what is going on.  
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Appendix:  Normal table based on quartile deviations 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The table gives the proportion in each tail of the 
distribution. For example, it indicates that 36.79% are more 
than 0.5 quartile deviations (QDs) above the median, and a 
similar number are less than 0.5 QDs below the median. 
 
QDs from   Proportion      QDs from   Proportion     QDs from   Proportion 

median     in tail         median     in tail        median     in tail 

========================================================================== 

0.0        50.00%          2.2        6.90%          4.4        0.17% 

0.1        47.33%          2.3        6.04%          4.5        0.14% 

0.2        44.66%          2.4        5.27%          4.6        0.12% 

0.3        42.00%          2.5        4.58%          4.7        0.10% 

0.4        39.37%          2.6        3.96%          4.8        0.080% 

0.5        36.79%          2.7        3.41%          4.9        0.066% 

0.6        34.27%          2.8        2.93%          5.0        0.054% 

0.7        31.83%          2.9        2.51%          5.1        0.045% 

0.8        29.46%          3.0        2.14%          5.2        0.037% 

0.9        27.19%          3.1        1.82%          5.3        0.030% 

1.0        25.00%          3.2        1.54%          5.4        0.025% 

1.1        22.92%          3.3        1.30%          5.5        0.021% 

1.2        20.93%          3.4        1.10%          5.6        0.017% 

1.3        19.06%          3.5        0.92%          5.7        0.014% 

1.4        17.28%          3.6        0.77%          5.8        0.012% 

1.5        15.62%          3.7        0.64%          5.9        0.010% 

1.6        14.06%          3.8        0.54%          6.0        0.008% 

1.7        12.61%          3.9        0.45%          6.1        0.007% 

1.8        11.27%          4.0        0.37%          6.2        0.005% 

1.9        10.03%          4.1        0.31%          6.3        0.004% 

2.0        8.89%           4.2        0.25%          6.4        0.004% 

2.1        7.84%           4.3        0.21%          6.5        0.003% 

 



Table 1: Simulated normal data 

 

Sample                                       Mean    Range 

 

 1  1623  1549  1695  1708  1605  1722     1650.3  173 

 2  1744  1638  1621  1828  1631  1676     1689.7  207 

 3  1673  1729  1693  1658  1719  1661     1688.8   71 

...  ...   ...   ...   ...   ...   ...      ...     ... 

100    1653  1626  1710  1685  1645  1662     1663.5   84 

 

(This table shows only 4 of the 100 samples.) 

 

 

 

 

 

Table 2: Median and quartiles of the sample means and ranges, and surprise 

limits for simulated data in Table 1 

 

             Mean        Range 

 

Lower quartile  1666.7   112 

Median   1681.3   141 

Upper quartile  1692.9   180 

 

LQD      14.6       29 

UQD      11.6       39 

 

Limits of 99.8% zone (median - 4.7 LQD  to median + 4.7 UQD) 

 

Lower            1613          5 

Upper            1736        324 



Table 3: Comparison of "true" limits and limits estimated by the quartiles 

method for data in Table 1 

 

                       Mean Chart              Range Chart      

                       Percentile              Percentile       

                       0.1      99.9           0.1      99.9    

"True" limits         1610      1744            29      297 

Quartiles method      1613      1736             5      324  

 

Error*                  +2%       -6%           -9%     +10% 

 

* The error is the discrepancy from the "true" limits expressed as a percentage of the width 

of the "true" interval. 

 

 

 

 

 

Table 4: Errors* in statistical limits calculated by quartiles and standard 

methods for 1000 simulated data sets like Table 1 

 

                       Mean Chart              Range Chart     

                       percentile              percentile      

                       0.1      99.9           0.1      99.9   

 

Quartiles method 

2.5 percentile       -19%      -16%          -28%      -24% 

median                 0%       -1%          -11%       -7% 

97.5 percentile       15%       18%            2%       13%   

 

Standard method** 

2.5 percentile        -5%       -5%           -1%       -7% 

median                -1%        0%            0%        0% 

97.5 percentile        4%        4%            1%        7% 

 

* Errors are the discrepancies from the "true" limits expressed as a percentage of the width 

of the "true" interval (as in Table 3). 

** Standard refers to the methods using mean sample mean and mean sample range. 

 

 

 

 

 

Table 5: Comparison of different methods of estimating statistical limits 

for the unstable process on which Figure 1 is based  

 

                       Mean Chart              Range Chart     

                       percentile              percentile      

                       0.1      99.9           0.1      99.9   

 

Standard method*      1713      1796            17      183 

Quartiles method      1651      1909            13      225 

 

Difference**           -75%     +136%           -2%     +25% 

 

* Standard refers to the methods using mean sample mean and mean sample range. 

** The difference is expressed as a percentage of the interval calculated by the standard 

method. 



Figure 1: Histogram of printing process data 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Range monitoring chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


