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Abstract 

This paper views empirical research as a search for illustrations of interesting possibilities 

which have occurred, and the exploration of the variety of such possibilities in a sample or 

universe. This leads to a definition of "illustrative inference" (in contrast to statistical 

inference), which, we argue, is of considerable importance in many fields of inquiry - ranging 

from market research and qualitative research in social science, to cosmology. Sometimes, it 

may be helpful to model illustrative inference quantitatively, so that the size of a sample can 

be linked to its power (for illustrating possibilities): we outline one model based on 

probability theory, and another based on a resampling technique. 
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Abstract 

This paper views empirical research as a search for illustrations of interesting possibilities 

which have occurred, and the exploration of the variety of such possibilities in a sample or 

universe. This leads to a definition of "illustrative inference" (in contrast to statistical 

inference), which, we argue, is of considerable importance in many fields of inquiry - ranging 

from market research and qualitative research in social science, to cosmology. Sometimes, it 

may be helpful to model illustrative inference quantitatively, so that the size of a sample can 

be linked to its power (for illustrating possibilities): we outline one model based on 

probability theory, and another based on a resampling technique. 

 

Introduction 

This paper concerns inferences from data in empirical research in areas where there is 

substantial uncertainty, so that precise predictions, exact understanding and universal laws 

are not a realistic expectation. 

 The usual methods for handling this uncertainty are those of statistical inference. 

Typically, this involves extrapolating the value of a population parameter, such as a mean or 

proportion, from a sample statistic, and then using significance levels, Bayesian posterior 

probabilities or confidence intervals to indicate a level of "confidence" - in a sense depending 

on the statistical formalism adopted - in these extrapolations. Essentially the same theory can 

also be used to estimate, in advance, the sample size required to achieve a given level of 

confidence in a given type of result. 

 Statistical inferences are clearly not the only type of inference which can be drawn 

from empirical data. For example, the attempts at universal inferences in some physical 

sciences (eg Newton's laws of motion, which were assumed to be universally valid), and 

many "qualitative" inferences in the social sciences, do not fit in any obvious way into the 

statistical category. Despite this, there is a strong tradition in many areas of the social 
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sciences that statistical inference is the only legitimate form of inference from empirical data. 

 This paper argues that there is an important category of inferences which are not 

statistical, but which are of substantial importance, and are at least as rigorous as statistical 

inferences. These are inferences about what is possible, as distinct from statistical inferences 

about how prevalent each of the possibilities is. Exploratory research into an unfamiliar new 

market may seek to uncover and illustrate the variety of possibilities: ie all the different types 

of users, uses and contexts of use for a product or service. Research into plant life in a 

tropical rain-forest may seek to find illustrations of, and catalogue, as much of the diversity 

of plant life as possible. In each case the prevalence of each of the possibilities may be of 

minor concern (initially, at least); the important task is to find as many possibilities as 

possible so that those of particular interest can be investigated further. 

 We describe this as illustrative inference, and argue that it represents an important 

mode of inference. We go on to give more examples of its use - including its implicit use in 

much qualitative research in social science. 

 Despite this, books and articles on sampling theory, and computer programs 

implementing this theory (eg Konijn, 1973; Thompson, 1992; Tryfos, 1996; Maisel and 

Persell, 1996; Nowack, 1990; nQuery Advisor, 1995) are almost always based on the 

assumption that samples must be analysed statistically. There are a few alternatives 

mentioned: the loosely defined, purposive approach adopted by qualitative researchers - 

particularly with small samples (Miles and Hubermann, 1994), and occasional references to 

discovery sampling - mainly with reference to auditing (Smith, 1976). Discovery samples are 

designed to find errors (or other items) with a given probability based on given assumptions, 

and are, in the terms introduced in the present paper, samples designed for illustrative 

inferences in a fairly limited domain. 

 If we are prepared to make a number of assumptions, it is possible to model 

illustrative inference quantitatively. This can provide estimates of sample sizes necessary to 

achieve particular goals, or levels of confidence of a given sample having covered a given 

proportion of the variety in the universe. We discuss two such models: one based on 

probability theory and another on a resampling approach. These models are the equivalent of 

the statistical models for estimating "confidence" (in whatever sense) and appropriate sample 

sizes - but on the assumption that the goal of the research is to draw illustrative inferences. It 

is important, however, to stress that the concept of illustrative inference may be relevant even 
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when neither of these models is useful: we can still infer that something is possible from an 

empirical datum, even without any means of estimating such quantitative parameters as the 

likelihood of finding such data, or the number of similar data we have failed to find. 

 

Illustrative inference 

We will start by defining illustrative inference in general terms, and then give some examples 

to clarify the definition. 

Suppose that an empirical observation O illustrates a general possibility P which is 

relevant to a universe U. Then we can infer from O that P is an empirically 

demonstrated possibility relevant to the universe U, and describe this inference as an 

illustrative inference. 

The possibility P may be constructed on the basis of O after the observation (an inductive 

illustrative inference), or it may be derived from a prior hypothetical possibility: a possibility 

on theoretical or conceptual grounds only. Once a hypothetical possibility has been observed 

it becomes an empirically demonstrated possibility. 

 Clearly, any observation O is likely to illustrate a multitude of different possibilities 

(see below for an example): those which are considered by a researcher will depend on the 

researcher's perspective and the motivation for the research. The possibilities which are 

demonstrated by illustrative inferences are possibilities of interest to the researcher. 

  The use of the term "observation" is not intended to imply an objective, realist 

interpretation. Observations, like the possibilities they may or may not illustrate, and the 

universes in which they are relevant, are at least in part constructed by observers with 

particular perspectives. All we are assuming here is that it is always clear whether a particular 

observation does illustrate a particular possibility. 

 The more restricted the universe, U, is the stronger the inference is in one sense, but 

the weaker it is in another sense. Knowing that there is an instance of a possibility in England 

is more informative than simply knowing it has happened somewhere in the world. On the 

other hand, the larger U is the greater the potential applicability of the possibility: the whole 

world, as opposed to England only. The choice of U is inevitably arbitrary: extending U too 

far means that P may be too remote a possibility to be interesting.  

 Illustrative inferences are inferences which can be drawn from data. Clearly the same 

data may, on occasions be used to draw statistical inferences; many research projects produce 
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both illustrative and statistical inferences. 

Some examples from marketing and management 

Illustrative inferences in these fields are very common: they occur whenever an example is 

cited to demonstrate that something can happen or to explain how it might work. The 

examples below seem fairly typical. 

 Penn and Christy (1994) elicited the comment that the Côtes de Duras wine 

production region in France had "the problem of establishing itself as something other than a 

cheap Bordeaux / Bergerac alternative" from an open ended question in a questionnaire sent 

to 10 major UK wine retailers. The observation, O, is the gathering and interpretation of this 

comment; the possibility, P, is the perceived problem to which the comment refers; and the 

universe, U, may be that of major UK wine retailers, or customers for the wine. The 

illustrative inference is the inference that this possibility (ie the perception of this problem) 

exists in the sense that it has been empirically demonstrated. The response was elicited from 

an open question, so it was not a possibility which the researchers had hypothesised in 

advance. The value of inferences such as this should be obvious: they enable people in the 

wine trade to appreciate (some of) the variety of opinions about Côtes de Duras wine. 

Statistical questions about the frequency of these opinions may (or may not) be of interest, 

but a simple list of opinions which have been expressed is of value independently of any 

statistical data. 

 The researchers' interests are also crucial to the definition of P: if the research had 

concerned handwriting, for example, the meaning of the comment may have been ignored in 

favour of the handwriting style and a very different set of possibilities would have been 

derived.  

 A series of case studies of the use of statistical methods for industrial quality 

management (Wood and Preece, 1992) illustrated the anticipated possibility of serious 

misinterpretations of the methods. In addition, this research provided illustrations of more 

specific possible modes of misinterpretation; these were not anticipated in advance but were 

derived inductively from the data gathered. In conclusion, Wood and Preece (1992) put 

forward some general recommendations for avoiding the counterproductive possibilities 

illustrated by the empirical evidence.  

The value of illustrative inference 

We can distinguish five senses in which illustrative inferences are useful. 
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1 A real example of a possibility has been found: this may be useful to explore the 

possibility in more detail (particularly if further access is possible) or to bring the idea 

"alive" with a real-life story. This is part of the motivation behind the case studies in 

Wood and Preece (1992). 

2 Illustrative inferences demonstrate that the possibility illustrated is a genuine, 

empirically demonstrated, possibility.  

3 A list of different possibilities which encompasses the variety in a sample may be 

extremely valuable - eg to see customers' differing attitudes to wine, or businesses' 

differing uses of statistical methods. 

The next two uses relate to attempts to infer general laws. 

4 If a possibility is illustrated which contradicts a general law, then, in principle, this 

general law has been shown to be false. The classic example here is that the 

observation of a black swan falsifies the "law" that all swans are white. (In practice 

this falsification process is slightly hazier than this might suggest - see Lakatos, 

1981). The final use is the converse of this. 

5 If, despite repeated, well-directed attempts, a hypothetical possibility has not been 

empirically illustrated, this provides evidence that it may actually be an impossibility: 

this is the basis of Popper's (Popper, 1980) description of science as a search for 

general hypotheses which can withstand serious attempts at falsification. To take a 

practical example, if, despite repeated attempts, Wood and Preece had failed to find 

an illustration of a misinterpretation of statistical methods, this would have provided 

strong support for the proposition that statistical methods are always used correctly.  

The contrast with statistical inference 

It is worth briefly contrasting illustrative inference with statistical inference. We have not 

managed to find in the literature a general definition of statistical inference, which 

distinguishes it from other modes of inference, and is independent of any particular approach 

to statistics (such as the Bayesian school). The following seems to us to summarise the 

essence of the concept: 

The essential feature of a statistical inference from a sample of data is that the 

conclusion depends on the prevalence or frequency of particular types of individual or 

ranges of measurements found in the sample. Furthermore, methods of statistical 

inference are typically applied to phenomena that are expected to occur sometimes, 
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rather than always or never. 

The values of aggregating statistics such as means or correlation coefficients, or order 

statistics such as medians, are all dependent on the prevalence of different categories or 

values in the sample: if the frequencies were different the statistics calculated may change. 

Statistical inferences typically involve extrapolating patterns found in the data (eg "smokers 

are more likely to develop lung cancer") to a wider context.  

 

Data gathering for illustrative and statistical inference 

If the main purpose of the research is to derive statistical inferences, it is clearly necessary to 

try to ensure that the sample is as representative as possible. (This is one of two requirements 

for the application of inferential statistics listed by Shvyrkov, 1997.) Statistical results depend 

- by the definition above - on the frequencies of various categories of individual in the 

sample, so the sample will clearly be of little use if these frequencies do not correspond 

reasonably closely to the proportions in the underlying universe. The sample is designed to 

represent the universe in this sense. Random and stratified sampling are approaches which are 

normally designed to achieve representative samples in this sense.  

 If, on the other hand, the main purpose of the research is to derive illustrative 

inferences, then representativeness in this sense is not necessary. In these circumstances non-

representative, or deliberately "biased", samples may be of more use than representative ones 

- if the bias is in favour of interesting possibilities - although illustrative inferences can 

certainly be drawn from representative samples. Qualitative researchers typically take small 

purposive samples which are designed to uncover illustrations of interesting and relevant 

possibilities. 

 Stratification is a potentially powerful tactic for improving both types of samples. 

With a suitable choice of strata stratified samples are likely to be more representative than 

simple random samples. Stratification may also be helpful for improving the usefulness of 

illustrative inferences if strata are chosen to ensure the inclusion in the sample of different 

categories of individual which are likely to illustrate different types of possibilities. On the 

other hand, a random sample may throw up new possibilities, precisely because it is not 

chosen on the basis of the researcher's preconceptions. 

 Sometimes, data is not collected from discrete units: eg observation studies based on 

video evidence. In these cases the issues involving representativeness, purposiveness and 
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stratification are identical, although the practical approaches to designing the sample will 

obviously differ. 

 

The scope of illustrative inference 

The examples above illustrate the way in which illustrative inferences can be useful in 

marketing and management. In this section we list a few more general possibilities. 

Qualitative research in the social sciences (including management and education) 

Qualitative research is typically based on "detailed descriptions of situations, events, people, 

interactions and observed behaviours; direct quotations from people about their experience, 

attitudes, beliefs and thoughts ...." (Sykes, 1991). Such data is of limited use for statistical 

inferences since each case is unique; on the other hand it is clearly the basis of illustrative 

inferences yielding detailed analysis of specific possibilities.  

 Despite this, qualitative researchers often make inferences from their samples about 

what "most people" do, or about phenomena which "tend to" cause other phenomena: these 

are, in effect, statistical inferences (Wood, 1997). 

Case study research 

A detailed analysis of a single case, or a few cases, is an established method in areas such as 

management and education (Yin, 1993). Case studies are useful because they demonstrate 

what is possible - perhaps so that these possibilities can be emulated or avoided elsewhere.  

Risk management 

Statistical analysis concentrates on the likelihood of occurrence of particular anticipated risks. 

The prior, more fundamental, problem is that of compiling a list of everything that could go 

wrong: eg it is clearly important that there should be a systematic search for the possible side-

effects of new drugs. 

Case-based reasoning 

Case-based reasoning is an AI (artificial intelligence) technique for automating reasoning 

which is based on the idea of finding a similar past case as a model on which to base 

recommendations (Kolodner 1993). This involves searching for empirical cases which 

illustrate particular possibilities. 

Informal arguments 

Many informal arguments rely on illustrative inference. One of us was giving a paper 

recently about some new possibilities for statistical education. A question was raised, very 
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reasonably, about whether the ideas proposed had been tried out. The questioner was not 

asking about a statistical survey, but a simple demonstration that the new possibilities would 

work in practice. Another illustration of this principle is the present paper: as part of our 

argument we are providing illustrations of the use of illustrative inference in order to 

convince the reader that it is a real and useful possibility. 

Other possibilities 

These are just a few examples. Illustrative inference is also obviously relevant in 

experimental design (to see what is possible under the different treatments, as opposed to 

comparing average performance), cosmology (finding illustrations of the theoretical 

possibility of black holes and extra-terrestrial intelligence), biology (investigating the 

diversity in a population) and many other fields. 

 In many of these areas, the instinctive reaction of many people - perhaps especially 

academics - would be to look for statistical evidence. Clearly statistical evidence has its uses, 

but we also believe that there is a very important role for illustrative inferences - for the 

search for possibilities which have been empirically demonstrated. Particularly if we are 

interesting in change, in improvement, or in exploring new areas, finding new possibilities, 

and understanding the variety of possibilities, may be much more valuable than finding out 

how likely or prevalent the known possibilities are under existing conditions. 

 

Quantitative models of illustrative inference 

In some (but by no means all) contexts it may be useful to build a quantitative model of 

illustrative inference to link parameters such as the size of a sample and the number of 

possibilities it illustrates. This section outlines two such models. Both depend on a number of 

assumptions. The first group of assumptions (1-5 below) are necessary for both of the 

models; Assumptions 6-12 are necessary for one of the models only and are listed in the 

subsections on these models. These assumptions may be justified in two senses: firstly they 

may be deemed sufficiently realistic, or secondly, while not strictly realistic, they may be 

useful for exploring possible scenarios on a "what if?" basis. 

 Assumption 1. We can always decide unambiguously whether a particular observation 

illustrates a particular possibility.  

 Assumption 2. The universe is composed of discrete, individual items of a similar 

kind: people or organisations, for example. Each individual is then "observed" (ie observed, 
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or interviewed, etc) once, so we can talk loosely of a sample of individuals instead of a 

sample of observations. 

 Assumption 3. The possibilities are discrete. In practice, for example, the possibility of 

misunderstanding statistics may be difficult to distinguish from the possibility of carelessness 

interpreting graphs. The assumption here is that these are distinct possibilities - an 

observation may illustrate one, or the other, or neither, or both of them.  

 Assumption 4. One observation of a possibility provides all the information of interest 

about that possibility: further observations are of no interest. If, for example, we are 

interested in the possibility of someone taking a holiday in Greece, all the information of 

interest is provided by one illustration: no value is added by further illustrations. In practice, 

this assumption can be made reasonable by defining the possibilities in fairly restricted terms 

- eg not Greece in general, but perhaps particular Greek resorts. 

 Assumption 5. If possibilities are derived inductively from observations, this is done 

in a way which depends only on the observations and the researcher's perspective - which is 

assumed to be stable. (If, on the other hand, researchers can generate as many possibilities as 

they choose from a given observation, any attempt to model the number of possibilities 

illustrated is obviously doomed to failure.) 

Illustrative inference: a probability model 

How large does a sample need to be to provide an adequate picture of the variety in the 

universe? One response to this problem is to carry on sampling additional cases until 

sufficient possibilities have emerged. However, this raises the questions of how "sufficient" 

can be defined, and of providing an initial estimate of the likely sample size. Just as for 

statistical sampling, we need a way of balancing the costs of a sample against the information 

it is likely to provide. In this section we will set up a probability model to approach these 

questions. We need to make a further four assumptions in addition to the five above. 

 Assumption 6. The researcher is able to make a statement, before taking the sample, 

about how many possibilities there are in the universe: we will call this the variety, v. This 

may be a "what-if" assumption (suppose there are 10 interesting possibilities), or because 

there are a number of hypothesised categories of possibilities as formalised, for example, in a 

"tick the box" question on a questionnaire. 

 Assumption 7. Assumption 6 holds, and it is also assumed that all of these possibilities 

are equally prevalent in the universe, that this prevalence can be measured as a probability, p 
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(ie the probability of a randomly chosen individual illustrating a particular possibility), and 

that p is known in advance. This is unlikely to be realistic, but it is necessary to keep the 

model to a manageable level of complexity, and may be a useful basis for a "what-if" analysis 

(see below). 

 Ideally we would like to use samples which allow us 100% confidence (c) of 100% 

coverage (g) of all v possibilities. In practice this is not possible and compromises need to be 

made. A simple probability model can be built on the basis of two further assumptions: 

 Assumption 8.  Making assumption 2 (discrete units), the sample is selected at random 

from the universe.  

 Assumption 9. The possibilities are spread randomly and independently throughout 

the universe; they are not, for example, strongly clustered. 

 The mathematical relationships between the six variables - universe size (N - which 

may be infinite), sample size (n), variety (v), prevalence (p), coverage (g) and confidence (c) 

- are outlined the Appendix. This appendix includes some spreadsheet expressions for 

calculating some of these variables from the others. (Discovery sampling (Smith, 1976) is, in 

effect, a particular case of this model with v = 1 and g = 100%.) 

 Numerical tables can deal comfortably with three variables (one tabulated, one across 

the top of the table, and one down the side). Six, however, is not feasible, so a general set of 

tables summarising the model is not viable. Furthermore, as the reader may care to verify, 

some of the calculations necessitated by the model are not trivial. This means that the only 

fully satisfactory implementation of the model is via a computer program. However, Table 1 

can be used to answer some specific questions.  

 TABLE 1 HERE 

 As an example consider the case of a very simple questionnaire to ask respondents to 

list the features they would particularly like to see on a battery operated electric car. The 

initial coding scheme had twelve categories of response, three of which were: 

 speed, features such as electric windows, "other". 

The first of these covers the possibility of a respondent being concerned that the car will go 

fast enough. Different respondents may have different speeds in mind, but it seemed 

reasonable (to us) to view this concern over speed as a single possibility. This was not the 

case for the other two categories above both of which may encompass several, very different, 

requirements. Accordingly we made a rough estimate of the variety of possibilities in the 
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universe: between 20 and 40. The next step was to decide on a "cut-off" prevalence level. We 

made a decision that we were prepared to ignore possibilities which occurred to fewer than 

10% of people in the universe. Table 1 can now be used: it shows that if we want to be 95% 

confident of collecting data on all possibilities with a prevalence above this 10% cut-off level 

we needed a sample of 57-64 people (depending on the exact value used for the variety). This 

suggests that our objective would be achieved by a sample of 64 people. 

 The assumptions on which this conclusion is based are the 9 assumptions above and 

the values of v and p used. Assumption 6, that the variety is known in advance, is, in practice, 

not so important as it may seem, because the final conclusion is relatively insensitive to the 

value used: v = 20 giving a sample size of 57, and v = 40 giving a sample size of 64. A 

slightly larger sample, 72, would be sufficient for a variety of 100 possibilities. Assumption 

7, about the equal prevalences, is implausible as a description of reality, but useful if viewed 

as a cut-off mechanism for possibilities whose prevalence is very low. The fact that many of 

the hypothesised possibilities are almost certain to have prevalences greater than 10% means 

that actual confidence of achieving 100% coverage is likely to be more than 95%. 

Furthermore, if the estimate of variety is an upper bound on what is likely, the actual variety 

is likely to be lower, so this is another reason for supposing that the confidence is actually 

more than 95%. (This suggests the idea of using a lower value of c, say 80%, for Table 1; we 

will however stick with the conventional 95% here.) 

Illustrative inference: a resampling model 

The model presented in this section makes fewer assumptions about the universe: it is not 

necessary to make Assumptions 6-9 on which the probability model depends. This model 

starts from a position of ignorance about how many possibilities there are, and about their 

prevalence, and about how they are distributed in the universe. It is also not necessary to 

assume that the sample is selected at random.  

 Given that we are assuming no prior knowledge of the universe, there is obviously 

nothing that can be deduced in advance. Accordingly the model can only be applied after a 

given number of units have been sampled and analysed; it will then provide some help with 

analysing the performance of the sample and the likely benefits of sampling further 

individuals from the universe. (To avoid confusion, this section follows a different example.) 

 We assume that we have observed a sample of n individuals and have a list of the 

possibilities illustrated by each individual. Table 2 gives an example of such a set of data. 
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(The data refer to comments on software made by respondents to a questionnaire about a 

statistics course: the first two possibilities are labelled "frustrating" and "easy".) 

 TABLE 2 HERE 

 The first individual in Table 2 illustrates two possibilities (3, 8); the second illustrates 

none, and the third three. However, one of these three possibilities (8) has been illustrated by 

individual 1, so the additional value (using Assumption 4) from individual 3 is two 

possibilities (6, 7).  

 The question we wish to answer is that of deciding how many additional possibilities 

we are likely to illustrate by sampling further individuals. Clearly, the 13th individual is 

likely to yield less benefit than the 12th, and the 14th less than the 13th, because the more 

individuals that have been sampled already the greater the chance that any possibilities 

illustrated by the new individual have already been illustrated by an earlier individual. At this 

point it is worth formalising: 

 Assumption 10. The value of the information derived from a sample can be measured 

by the number of different possibilities illustrated: the greater this number the greater the 

value of the information. This is only reasonable to the extent to which all possibilities are of 

roughly equal value. 

 Predicting the value, in this sense, of extending a sample is clearly a difficult question 

because we are making no a priori assumptions about the universe. On the other hand there 

are situations where some extrapolations do seem plausible. Tables 3 and 4 below each show 

three individuals and three possibilities, but the pattern suggests that the additional value 

from the next individual is likely to be close to 0 in Table 3 but 1 in Table 4. Clearly this 

pattern may not continue. Table 4 may result from a universe with 3 possibilities each 

occurring in 33% of the universe - in which case there are no new possibilities to be 

illustrated, or it may be the result of 100 possibilities each occurring in 1% of the universe - 

in which case there are another 97 to be found and sampling further is likely to be very 

profitable. But despite this, Table 4 is more hopeful than Table 3 in terms of the likelihood of 

more possibilities emerging from further sampling.  

 TABLES 3 AND 4 HERE 

 We have no basis for a probability model like the one in the previous section, and yet 

there is a sense in which it is meaningful to extrapolate patterns. This suggests the possibility 

of simply writing down the additional possibilities illustrated by the first individual, the 
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second individual, the third individual and so on, and then simply extrapolating the sequence. 

This sequence is inevitably somewhat irregular (2, 0, 2, 7, 1, ... from Table 2), and clearly 

depends on the arbitrary order in which the individuals were selected. If the individuals were 

selected in another order the sequence would clearly be quite different (eg if individual 4 was 

first, the value from the first individual would be 8; if individual 2 were first it would be 0). 

As no order is any more likely than any other, the obvious thing to do is to take the mean 

over all possible orders of the 12 individuals. Unfortunately there are just over 479 million 

such orders, so a reasonable compromise is to simulate say, a few thousand, of these orders 

chosen at random, and then to take the mean of these. Clearly, the greater the number of 

orders simulated, the more reliable the answers: in what follows we have used 3000 different 

orders, which is reasonably reliable in the sense that two runs produce roughly similar results. 

This procedure relies on: 

 Assumption 11. Making assumption 2 (discrete units), essentially the same strategy is 

used to select each individual in the sample and to interpret the resulting observation: 

otherwise it will not make sense to reorder the sample in this way. This strategy may involve 

random sampling (ie Assumption 8), or it may be a deliberately biased strategy. This 

assumption rules out the possibility that the method by which the later individuals are chosen 

may depend on what is learned from the earlier individuals in the sample. 

 This simulation procedure is an example of the general approach of resampling 

(Simon, 1992; Noreen, 1989) - which is often useful when analytic models are unrealistic or 

impossible to derive. Table 5 gives the output from a simple computer program which 

performs this resampling procedure. 

 TABLE 5 HERE 

 In Table 5, the top left entry (2.07) indicates the mean - over 3000 randomly 

simulated orders of the 12 individuals in the sample - number of possibilities illustrated by 

the first individual in the sample. The entry below this (1.75) indicates the mean number of 

additional possibilities illustrated by the second individual (ie the value of the second 

individual using Assumption 10), and so on. 

 To go beyond this, to predict the value of sampling a 13th and a 14th individual, it is 

necessary to extend the pattern in Table 5. Clearly, the function used should be decreasing 

but should never be negative: there are obviously an infinite number of such functions, but 

there are perhaps two "obvious" ones: an exponential decay (Equation 1) and an inverse 
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linear relationship (Equation 2). Both of these are as "simple" as a straight line in that they 

involve two constants: we will make the value corresponding to individual 1, V1, the first of 

these constants in each case. 

  Vn = a
n-1

V1      (Equation 1) 

  Vn = V1/{1+(n-1)b}    (Equation 2) 

 Equation 1 means that the values attributable to successive individuals form a 

geometric series: the sum to infinity of such a series is finite. This sum would correspond to 

the (finite) number of possibilities in the universe (ie the variety in the terminology 

introduced above). It is easy to prove that Equation 1 is a consequence of the assumptions 

made to set up the probability model above. 

 The sum to infinity of the series defined by Equation 2 is infinite. This would be 

consistent with the assumption that there is no absolute limit to the number of possibilities 

which can be found. This may be plausible for universes comprising an infinite number of 

individuals.  

 FIGURE 1 HERE 

 Figure 1 shows the results in Table 5, and the extrapolations produced by fitting 

Equations 1 and 2 using the least squares criterion (implemented by the Optimiser Tool on 

the spreadsheet Quattro Pro). In this case, Equation 2 appears to fit better; the predicted value 

of the 13th individual is 0.6 from Equation 1 and 0.7 from Equation 2. The total number of 

possibilities to which the extrapolations from Equation 1 converge is 19.8. 

 Alternatively, we could, of course, extrapolate the pattern of the resample results 

simply by drawing an intuitively derived line on Figure 1. The final, assumption, Assumption 

12, is that the method of extrapolation used is an "appropriate" one.  

 There is a danger that the relatively neat pattern of Figure 1 may mislead readers into 

believing that the predictions made are more definite than they in fact are. We are making an 

empirical prediction about novel possibilities which have not yet been observed - which is 

obviously a task for which a high degree of accuracy should not be expected. The 

assumptions which it has been necessary to make to arrive at the predictions should alert the 

reader to the fact that they are very rough estimates indeed. (In principle, it would be possible 

to try to construct a confidence interval of some kind instead of a point estimate.) 

 Bearing in mind their likely inaccuracies, these extrapolations are obviously relevant 

to decisions about extending the sample further. Is the cost - in time and other resources - of 
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adding another individual to the sample justified by the estimated value in terms of new 

possibilities illustrated (ie 0.6 - 0.7 possibilities, or about 30% of the mean value of the first 

individual in a sample)? This is a judgement for the researcher to make, bearing in mind the 

costs and benefits of the survey. 

 

Conclusions 

In this paper we have defined illustrative inference as a type of inference from empirical data, 

and demonstrated its importance in a wide range of areas. These include qualitative research 

in the social and management sciences, risk management, case based reasoning and informal 

arguments. This is not to deny the importance of other forms of inference: eg statistical 

inference, and inferences about possibilities which are derived from the imagination (eg 

thought experiments or fiction) or from a conceptual, theoretical or mathematical analysis.   

 We then proposed two models for relating the size and usefulness of samples for 

illustrative inference. The first, probability, model entails assumptions about the number, 

prevalence and (uniform) distribution of possibilities in the universe. The second, resampling, 

model is only relevant after some data has been collected: this model has the advantage that it 

requires no a priori assumptions about the universe although it does require a number of 

other assumptions. Both models are useful for answering questions such as "Is it likely to be 

worthwhile or cost-effective to extend the sample?" and "How large a sample do we need to 

achieve particular goals?". The assumptions of these models are inevitably rather restrictive: 

the relevance of the underlying concept of illustrative inference extends beyond the scope of 

both of these models. 

 What is the practical value of this analysis? The first, essentially negative point, is that 

the distinction between the different kinds of inference, and the argument that representative 

samples are only necessary for statistical inferences, imply that the standard advice on 

sampling which statisticians are likely to give to qualitative researchers and others, is 

irrelevant if the research is aiming for illustrative, as opposed to statistical, inferences. 

 The second point is to reiterate the value of illustrative inferences. It is often more 

important to gather data on the range of possibilities, without imposing preconceptions on the 

data, than it is to estimate the current prevalence of these possibilities. Some of these 

possibilities may then be studied in depth. If the situation is changing fast, so that the past is a 

poor guide to the future, or if the prevalence of various possibilities in the sample is 
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influenced by factors which are of little long term significance (current market conditions, 

source of the sample, etc) a statistical analysis to the effect that 20% fall in this category and 

30% in that may be of little interest. On the other hand, the knowledge that there are, say, five 

market segments, and that detailed illustrative examples of each are available, may be very 

valuable indeed. 

 The third point is that sample size and effectiveness issues for illustrative inferences 

can be analysed. This should reveal if samples are too small to provide a reasonable coverage 

of the variety of interesting possibilities in the universe.  

 

Appendix: A probability model of illustrative inference 

The probability of possibility Pi occurring at least once in the (random) sample, ci, is 

 ci = 1 - (1 - p)
n
 

if the universe is infinite or very large. (The symbols used are defined in the section on the 

probability model above.) The probability, c, of the sample containing at least one of all v 

possibilities is 

 c = ci
v
 = (1 - (1-p)

n
)
v
 

This equation gives the confidence that we may have that the sample will achieve 100% 

coverage if the universe is infinite or large. It depends on the assumptions (8 and 9) that the 

possibilities are independently distributed in the universe and that the sample is randomly 

selected. If, on the other hand, there is a tendency for the possibilities to cluster together the 

formulae will not be accurate. Note also that the confidence here is a probability, whereas the 

confidence level implicit in a confidence interval, strictly, is not a probability (Sprent, 1981, 

p. 92). 

 This equation can easily be rearranged to give an expression for n, p or v 

(remembering that n and v must take integer values): 

 n = roundup(log(1-c^(1/v))/log(1-p),0) 

 p = 1-(1-c^(1/v))^(1/n) 

 v = int(log(c)/log(1-(1-p)^n)) 

These expressions are in the format required by the spreadsheet Excel - except that obviously 

the variables should be replaced by the appropriate cell references.  

 If we are interested in less than 100% coverage (g), or the universe is finite (of size 

N), the corresponding formulae are slightly more complex.  The probability (c) of the sample 
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illustrating at least a given proportion - the coverage (g) - of these v possibilities can be 

calculated by using the cumulative binomial distribution with v "trials" and a probability of 

success on each trial of ci. The finite universe means that the expression for ci becomes: 

 

 

The resulting expression for c in Excel format is 

BINOMDIST(v-g*v,v,FACT(N*(1-p))*FACT(N-n)/(FACT(N*(1-p)-n)*FACT(N)),TRUE) 
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Table 1: Minimum sample sizes necessary for 95% confidence of achieving 100% 

coverage (infinite universe) 
 

        Minimum prevalence (%)   

Variety   1     5   10   20   50 

1    299 59 29 14  5 

2    366 72 35 17  6 

3    406 80 39 19  6 

4    435 86 42 20  7 

5    457 90 44 21  7 

6    475 93 46 22  7 

7    490 96 47 23  8 

8    503 99 48 23  8 

9    515 101 50 24  8 

10    525 103 51 24  8 

11    535 105 51 25  8 

12    543 107 52 25  8 

13    551 108 53 25  8 

14    559 110 54 26  9 

15    566 111 54 26  9 

20    594 117 57 27  9 

30    635 125 61 29 10 

40    663 130 64 30 10 

50    685 135 66 31 10 

60    703 138 68 32 11 

70    719 141 69 33 11 

80    732 144 70 33 11 

90    744 146 71 34 11 

100    754 148 72 34 11 
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Table 2: Dataset 1 
 

                         Individual  

Possibility        1  2  3  4  5  6  7  8  9 10 11 12 

 1 Frustrating     0  0  0  1  0  0  0  0  0  0  0  0 

 2 Easy            0  0  0  0  0  0  0  0  1  0  0  0 

 3                 1  0  0  0  0  0  0  0  0  0  0  0 

 4                 0  0  0  1  0  0  0  1  0  0  1  0 

 5                 0  0  0  1  0  0  0  0  0  0  1  0 

 6                 0  0  1  1  0  0  0  0  1  0  0  0 

 7                 0  0  1  0  0  0  1  0  0  0  0  0 

 8                 1  0  1  0  1  0  1  1  0  0  1  0 

 9                 0  0  0  1  0  0  0  0  0  0  0  0 

10                 0  0  0  1  0  0  0  0  0  0  0  0 

11                 0  0  0  1  0  0  0  0  0  0  0  0 

12                 0  0  0  0  0  0  1  0  0  0  0  0 

13                 0  0  0  0  1  0  0  0  0  0  0  0 

14                 0  0  0  1  0  0  0  0  0  0  0  0 

 
1 indicates that an individual illustrates a possibility, 0 that it does not. 
 

 

 

Table 3: Dataset 2 
 

                  Individual  

Possibility        1   2   3  

 1                 1   1   1 

 2                 1   1   1 

 3                 1   1   1 

 
1 indicates that an individual illustrates a possibility, 0 that it does not. 
 

 

 

Table 4: Dataset 3 
 

                  Individual  

Possibility        1   2   3  

 1                 1   0   0 

 2                 0   1   0 

 3                 0   0   1 

 
1 indicates that an individual illustrates a possibility, 0 that it does not. 
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Table 5: Output from resampling procedure based on Dataset 1 (3000 simulated sample 

orders) 
 

Individual   Value    Total value  % of value from Individual 1 

    1        2.07      2.07        100% 

    2        1.75      3.83        85% 

    3        1.45      5.27        70% 

    4        1.31      6.59        63% 

    5        1.20      7.78        58% 

    6        1.08      8.86        52% 

    7        1.02      9.88        49% 

    8        0.91     10.79        44% 

    9        0.88     11.67        43% 

   10        0.80     12.47        39% 

   11        0.77     13.24        37% 

   12        0.75     13.99        36% 

 

 

 

 

 

 

 

 

 

Figure 1: Extrapolations from Table 5 
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